and O 2 p AO's. Basis functions for the W atom were derived for $\mathrm{a}+1$ oxidation state with the 6 s and 6 p exponents fixed at 1.8.40 An exponent of 1.16 was used for the H 1s atomic orbital. ${ }^{41}$

Acknowledgment. We thank the National Science Foundation and the Wrubel Computing Center for support. We thank Professor E. R. Davidson of Indiana University for helpful discussions.

[^0]D.L.C. was the 1985/1986 Indiana University General Electric Fellow. The VAX 11/780 is an NSF-supported departmental facility, Grants CHE-83-09446 and CHE-89-05851.

Registry No. $\mathrm{W}_{4}(\mathrm{O}-i-\mathrm{Pr})_{12}, 104911-26-4 ; \mathrm{W}_{2}(\mathrm{O}-t-\mathrm{Bu})_{6}, 57125-20-9$; $\mathrm{W}_{2}(\mathrm{O}-i-\mathrm{Pr})_{6}, 71391-16-7 ; \mathrm{W}_{2}\left(\mathrm{NMe}_{2}\right)_{6}, 54935-70-5 ; \mathrm{W}_{4}(\mu-\mathrm{OH})_{4}(\mathrm{OH})_{8}$, 110825-38-2; W, 7440-33-7.

Supplementary Material Available: Tables of anisotropic thermal parameters, bond distances, and bond angles (4 pages); listing of F_{o} and F_{c} values (11 pages). Ordering information is given on any current masthead page.

Studies of Hypervalent Iron in Aqueous Solutions. 1. Radiation-Induced Reduction of Iron(VI) to Iron(V) by $\mathrm{CO}_{2}{ }^{-}$

Benon H. J. Bielski* and M. J. Thomas ${ }^{\dagger}$
Contribution from the Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973. Received April 20, 1987

Abstract

Iron(VI) can be reduced in aqueous solutions to iron (V) by pulse radiolytically generated $\mathrm{CO}_{2}{ }^{-}, k_{3}=(3.5 \pm 0.1)$ $\times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The respective UV and visible spectra for these hypervalent oxidation states of iron are reported. It was found that formate reacts 10^{5} times faster with $\mathrm{Fe}(\mathrm{V})$ than with $\mathrm{Fe}(\mathrm{VI})$. Other kinetic rate measurements include the following: $k_{4}\left[\mathrm{O}_{2}{ }^{-}+\mathrm{Fe}(\mathrm{VI})\right]=(5.71 \pm 0.17) \times 10^{3}, k[\mathrm{NADH}+\mathrm{Fe}(\mathrm{VI})]=77.1 \pm 4.4, k[\mathrm{HCOONa}+\mathrm{Fe}(\mathrm{VI})]=(2.33 \pm 0.4) \times 10^{-2}$, $k[\mathrm{EtOH}+\mathrm{Fe}(\mathrm{VI})]=(1.47 \pm 0.7) \times 10^{-3}, k[\mathrm{DTPA}+\mathrm{Fe}(\mathrm{VI})]=(8.53 \pm 0.32) \times 10^{-4}, k[\mathrm{HCOONa}+\mathrm{Fe}(\mathrm{V})]=(2.48 \pm$ $0.32) \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The results are discussed in terms of their possible role in $\mathrm{Fe}(\mathrm{VI})$ oxidation processes.

Despite considerable evidence for the involvement of Fe (IV) $/ \mathrm{Fe}(\mathrm{V})$ in iron-catalyzed oxidation/hydroxylation processes, little tangible information has been forthcoming concerning these oxidation states in the field of aqueous inorganic chemistry. ${ }^{1-12}$ While the chemistry of $\mathrm{Fe}(\mathrm{VI})$ in aqueous solutions is well reviewed, ${ }^{13,14}$ similar information on $\mathrm{Fe}(\mathrm{V})$ is, with exception of a short report from this laboratory, ${ }^{15}$ scant and limited to research reports on high-temperature melts and the solid state.

Iron ferrates $\left(\mathrm{K}_{2} \mathrm{FeO}_{4}, \mathrm{BaFeO}_{4}\right.$, etc. $)$ are easily prepared in relatively pure form. ${ }^{16,17}$ They are very stable, safe, and strong oxidizing agents. In several reactions they were shown to display a high degree of selectivity. ${ }^{2-4,6-8,11,18}$ In aqueous solutions $\mathrm{Fe}(\mathrm{VI})$ is present as the $\mathrm{FeO}_{4}{ }^{2-}$ ion, believed to have a tetrahedral structure similar to its geometry in the solid state. ${ }^{19,20}$ The four oxygens in the molecule were shown to be equilvalent and apparently exchange in water slowly. ${ }^{20}$ While aqueous $\mathrm{FeO}_{4}{ }^{2-}$ solutions are relatively stable in the pH range between 9 and 10.5 , they deteriorate rapidly in more acidic media with evolution of oxygen. The decomposition process is accelerated by ferric oxides/ hydroxides, which accumulate and precipitate as the reaction progresses. In basic media $\mathrm{FeO}_{4}{ }^{2-}$ apparently decomposes by a complex disproportionation mechanism. ${ }^{13,21-23}$ Recent determinations of the pK 's of $\mathrm{FeO}_{4}{ }^{2-}\left(\mathrm{p} K_{1}=3.5 ; \mathrm{p} K_{2}=7.8\right)$ and its decomposition rates over a very broad pH range (2-9.5) have significantly advanced the understanding of the aqueous chemistry of $\mathrm{Fe}(\mathrm{VI}) .{ }^{13} E^{0}$'s have been estimated to be near -2.20 V in acid media and -0.72 V in alkaline solutions. ${ }^{24}$

Until recently, formation of $\mathrm{Fe}(\mathrm{V})$ had been observed only in high-temperature melts. ${ }^{25-28}$ X-ray studies of isolated crystals from such melts suggest that the iron is present in the $\mathrm{FeO}_{4}{ }^{3-}$ form. ${ }^{26}$ Although there are claims that stable solutions of $\mathrm{K}_{3} \mathrm{FeO}_{4}$ were prepared in cold alkaline solutions by dissolving the salt isolated from melts, ${ }^{29}$ pulse radiolytically generated $\mathrm{FeO}_{4}{ }^{3-}$ in 5

[^1]N NaOH at ambient temperatures has a relatively short lifetime $\left(k_{\text {decay }}=4 \mathrm{~s}^{-1}\right) .^{15}$

[^2]

Figure 1. Visible absorption spectra of $\mathrm{FeO}_{4}{ }^{2-}$ and $\mathrm{FeO}_{4}{ }^{3-}$ in aqueous solutions containing 0.02 M sodium formate, $40 \mu \mathrm{M} \mathrm{DTPA}$, and 0.02 M $\mathrm{N}_{2} \mathrm{O}$ at $\mathrm{pH} 9.5-10.5,24^{\circ} \mathrm{C}$.

The present investigation (1) establishes the kinetic parameters for the reduction of $\mathrm{Fe}(\mathrm{VI})$ to $\mathrm{Fe}(\mathrm{V})$ by the $\mathrm{CO}_{2}{ }^{-}$radical, (2) confirms the recently reported visible spectrum of $\mathrm{Fe}(\mathrm{V})^{15}$ and presents spectral data in the UV range, (3) compares the rates of reaction of formate with $\mathrm{Fe}(\mathrm{VI})$ and $\mathrm{Fe}(\mathrm{V})$, and (4) searches for compounds that reduce $\mathrm{Fe}(\mathrm{VI})$ to $\mathrm{Fe}(\mathrm{V})$ at rates that would allow mechanistic studies of the latter to be carried out in a stopped-flow spectrophotometer.

Experimental Section

Chemicals. All solutions were prepared with water, which, after distillation, had been passed through a Millipore ultrapurification system (MQ water). The pHs of solutions were adjusted by the addition of perchloric acid (double distilled from Vycor; GFS Chemical Co.) or potassium hydroxide (Apache Chemicals, Inc., ultrapure, 99.998%). Either oxygen or nitrous oxide (ultrapure, Matheson Co., 99.99%) was used when appropriate. Diethylenetriaminepentaacetic acid (DTPA; Aldrich Chemical Co., Inc.) was recrystallized 4 times from MQ water before use. Sodium formate was recrystallized twice from 1 mM DTPA solution, followed by two additional recrystallizations from pure MQ water. Potassium ferrate $\left(\mathrm{K}_{2} \mathrm{FeO}_{4}\right)$ was synthesized according to the method of Thompson et al. ${ }^{16}$ The samples were of 96% purity with respect to Fe (Fe was determined by atomic absorption spectroscopy), the impurity being $\mathrm{K}_{2} \mathrm{CO}_{3}$. At pH 10.0 the spectrum of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ shows a maximum at $510 \mathrm{~nm}\left(\epsilon=1150 \pm 25 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and a shoulder between 275 and 320 nm (see Figures 1 and 2).

Equipment. The pulse-radiolysis experiments were carried out with the BNL $2-\mathrm{MeV}$ Van de Graaff accelerator according to procedures described earlier. ${ }^{30}$ Doses were computed by the KSCN dosimeter, with the assumption that $G\left[(\mathrm{SCN})_{2}{ }^{-}\right]=6.13$. G values (the number of radicals/molecular products formed per 100 eV of energy dissipated in the medium) are given in parentheses in eq I. ${ }^{31}$ Optical path lengths were

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O} \xrightarrow[m \rightarrow \mathrm{e}_{\mathrm{aq}}]{ }{ }^{-}(2.65), \mathrm{H}(0.65), \mathrm{OH}(2.75), \mathrm{H}_{2} \mathrm{O}_{2}(0.72), \mathrm{H}_{2}(0.45) \tag{I}
\end{equation*}
$$

2.0 or 6.1 cm as required, and the solutions were thermostated at $25^{\circ} \mathrm{C}$. ${ }^{60} \mathrm{Co} \gamma$-ray experiments were carried out with a $1.85 \mathrm{krad} / \mathrm{min}$ source. The source was calibrated with the ferrous dosimeter, with the assumption that $G\left(\mathrm{Fe}^{3+}\right)=15.5 .{ }^{32}$ Routine UV-visible spectra were recorded on a Cary 210 spectrophotometer. Some kinetic measurements were made on a Durrum 110 stopped-flow spectrophotometer at ambient

[^3]

Figure 2. UV spectra of $\mathrm{FeO}_{4}{ }^{2-}$ and $\mathrm{FeO}_{4}{ }^{3-}$ in aqueous solutions containing 0.02 M sodium formate, $40 \mu \mathrm{M} \mathrm{DTPA}$, and 0.02 M nitrous oxide at $\mathrm{pH} 9.5-10.5,24^{\circ} \mathrm{C}$.

Table I. Reactivity of $\mathrm{FeO}_{4}{ }^{2-}(230 \mu \mathrm{M})$ with Formate (Concentration Variable) at pH 10.5 in the Presence of DTPA (600 $\mu \mathrm{M})$ at $25^{\circ} \mathrm{C}^{a}$

$t_{1 / 2}, \mathrm{~s}$	[HCOONa], M	$k, \mathrm{M}^{-1} \mathrm{~s}^{-1}$
800	0.00	8.53×10^{-4}
600	0.05	2.31×10^{-2}
120	0.25	2.31×10^{-2}
60	0.50	2.32×10^{-2}
29	1.00	2.39×10^{-2}

${ }^{a}$ Measured $k_{\mathrm{av}}=(2.33 \pm 0.04) \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The spontaneous rate at which Fe (VI) disappears under these conditions is the rate with free DTPA, $k=8.53 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.
temperatures ($23-25^{\circ} \mathrm{C}$). The optical path length was 2 cm .
Preparation and Use of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ Solutions. Fe (VI) solutions were prepared by dissolving crystalline samples of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ in MQ water and adjusting the pH by addition of KOH . In carefully cleaned glass vessels, solutions containing up to $1 \mathrm{mM} \mathrm{FeO}_{4}{ }^{2-}$ are stable for several hours. The natural pH of $50-200 \mu \mathrm{M} \mathrm{K}_{2} \mathrm{FeO}_{4}$ solutions ranges from 9.5 to 10.5 . Because of the high stability of ferrate solutions in this pH range, most experiments were carried out at $\mathrm{pH} 10.0-10.5$, unless stated otherwise. Measured absorbance changes at 510 nm show a decay, approximately 2.5% during the first hour. The deterioration of the solutions accelerates as decomposition products (various forms of ferric oxide/hydroxide) accumulate. Hence all experiments were carried out with fresh solutions, which were discarded after 1 h . To avoid the formation of interfering precipitates during pulse and/or stopped-flow experiments, small amounts of DTPA ($50-100 \mu \mathrm{M}$) were added to chelate Fe(III) and thereby prevent precipitation of iron hydroxides.

Results

Reactivity of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ with Formate. Since one of the objectives of this project is the reduction of $\mathrm{FeO}_{4}{ }^{2-}$ by the $\mathrm{CO}_{2}{ }^{-}$radical, generated in situ by radiolysis of formate, the reactivity of formate with ferrate had to be established. The reaction was measured at 510 nm on a Cary 210 under pseudo-first-order conditions over a large concentration range of formate ($0-1 \mathrm{M}$) (Table I). The observed first-order rates in the presence of $600 \mu \mathrm{M}$ DTPA are proportional to the formate concentration and yield, after appropriate corrections for the spontaneous decay of $\mathrm{FeO}_{4}{ }^{2-}$, a rate constant of $k=(2.33 \pm 0.4) \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. To avoid complications from this reaction, an apparatus was built that allows the premixing of $\mathrm{N}_{2} \mathrm{O}$-saturated solutions of formate and ferrate 4-5 s before the mixture is pulse irradiated with the electron beam.

Reactivity of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ with Ethanol. The rate of reaction of ferrate with ethanol was monitored under pseudo-first-order conditions at 510 nm on a Cary 210 spectrophotometer at pH 10.5 and $24^{\circ} \mathrm{C}$ in solutions containing $32.8-71.9 \mu \mathrm{M} \mathrm{FeO}_{4}{ }^{2-}, 1.03-2.06$

Table II. Reactivity of $\mathrm{FeO}_{4}{ }^{2-}(59.7-168 \mu \mathrm{M})$ with $\mathrm{Fe}(\mathrm{III})-\mathrm{DTPA}$ in the Presence of Excess DTPA $(15 \mathrm{mM})$ at $\mathrm{pH} 10.5^{a}$

Fe(III)-DTPA, $\mu \mathrm{M}$	k, $\mathrm{M}^{-1} \mathrm{~s}^{-1}$	Fe(III)-DTPA, $\mu \mathrm{M}$	k, $\mathrm{M}^{-1} \mathrm{~s}^{-1}$
100.0	1.23	500.0	0.90
200.0	0.99	1000.0	0.97

${ }^{a}$ All rates are corrected for the reactivity of $\mathrm{FeO}_{4}{ }^{2-}$ with free DTPA ($\left.k=(8.53 \pm 0.32) \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$. The reactions were monitored at 510 nm on a Cary $210 \mathrm{in} 1-\mathrm{cm}$ cells at $24^{\circ} \mathrm{C}$.

M EtOH , and $105 \mu \mathrm{M}$ DTPA. The corresponding second-order rate constant found is $k=(1.47 \pm 0.07) \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.
Reactivity of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ with DTPA. When $\mathrm{Fe}(\mathrm{VI})$ reacts with other compounds, it is reduced at some stage during the overall process to iron(III) hydroxide, which precipitates in alkaline solutions. The precipitates not only interfere with the optical measurements but also accelerate the spontaneous decomposition of $\mathrm{Fe}(\mathrm{VI})$. Precipitation of iron hydroxides can be avoided by addition of a strong Fe(III) chelating agent such as DTPA. Since DTPA is itself attacked by $\mathrm{Fe}(\mathrm{VI})$ and /or its reduction products, e.g. $\mathrm{Fe}(\mathrm{V}) / \mathrm{Fe}(\mathrm{IV})$, it became necessary to determine not only the rate of reaction of $\mathrm{Fe}(\mathrm{VI})$ with DTPA but also with Fe (III)DTPA. The latter reactions are very slow and were determined on a Cary 210 spectrophotometer at 510 nm under pseudo-first-order conditions. The experimental details and results are summarized in Table II. As is apparent, the reactivity of $\mathrm{FeO}_{4}{ }^{2-}$ with Fe (III)-DTPA ($k=1.02 \pm 0.14 \mathrm{M}^{-1} \mathrm{~s}^{-1}$) is 3 orders of magnitude faster than the corresponding reaction with DTPA (k $\left.=(8.53 \pm 0.32) \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$.

Reduction of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ by CO_{2}^{-}. The control experiments for formate, ethanol, and DTPA have shown that their respective reactivities with $\mathrm{Fe}(\mathrm{VI})$ are sufficiently low not to interfere even at high concentrations when used with the described premixing apparatus, which has a dead time of approximately $4-5 \mathrm{~s}$. In the present study the ferrate ($40-200 \mu \mathrm{M}$) was reduced to $\mathrm{Fe}(\mathrm{V})$ by the $\mathrm{CO}_{2}{ }^{-}$radical, which was generated in a $\mathrm{N}_{2} \mathrm{O}$-saturated (0.02 M) formate solution (0.02 M) containing $40 \mu \mathrm{M}$ DTPA (eq 1-3).

$$
\begin{gather*}
\mathrm{e}_{\mathrm{aq}}^{-}+\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{OH}^{-}+\mathrm{N}_{2} \tag{1}\\
\mathrm{OH}+\mathrm{HCOO}^{-} \rightarrow \mathrm{CO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{2}\\
\mathrm{CO}_{2}^{-}+\mathrm{FeO}_{4}{ }^{2-} \rightarrow \mathrm{FeO}_{4}{ }^{3-}+\mathrm{CO}_{2} \tag{3}
\end{gather*}
$$

The $\mathrm{CO}_{2}{ }^{-}$radical reduces $\mathrm{FeO}_{4}{ }^{2-}$ with $G=6.05$ and at a rate $k_{3}=(3.5 \pm 0.1) \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $\mathrm{pH} 9.5-10.5$. Although most of the studies were carried out in the pH range from 9.5 to 10.5 because of the stability of ferrate solutions in this pH range, a series of experiments were extended up to pH 12.3. The values obtained for k_{3} were similar within experimental error, which suggests that the above reported value represents a true rate constant. The G value for the disappearance of ferrate under pulse-radiolytic conditions was confirmed by ${ }^{60} \mathrm{Co} \gamma$-ray studies. The latter experiments were carried out with solutions containing 0.02 M formate, $0.02 \mathrm{M} \mathrm{N}_{2} \mathrm{O}, 40 \mu \mathrm{M}$ DTPA, and variable amounts of $\mathrm{K}_{2} \mathrm{FeO}_{4}(43-85 \mu \mathrm{M})$. The solutions were irradiated for $30-\mathrm{s}$ intervals and checked for absorbance changes at 510 nm on a Cary 210. The computed $G\left(\mathrm{FeO}_{4}{ }^{2-}\right)=6.10 \pm 0.10$ is based on $G\left(\mathrm{Fe}^{3+}\right)=15.5$, in good agreement with the value obtained under pulse-radiolytic conditions. The UV and visible spectra of $\mathrm{FeO}_{4}{ }^{2-}$ and $\mathrm{FeO}_{4}{ }^{3-}$ shown in Figures 1 and 2 are not affected by pH changes between 9.5 and 10.5 nor are they affected by the addition of DPTA.

Reduction of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ by $\mathrm{O}_{2}{ }^{-}$. That radiation-generated $\mathrm{O}_{2}{ }^{-}$is capable of reducing ferrate had been suggested in an earlier ${ }^{60} \mathrm{Co}$ γ-ray study of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ solutions. ${ }^{23}$ In the present study the superoxide radicals were generated photolytically in oxygensaturated $1-5 \mathrm{mM}$ formate or ethanol solutions (eq 4) by a Xe

$$
\begin{equation*}
\mathrm{FeO}_{4}{ }^{2-}+\mathrm{O}_{2}^{-} \rightarrow \mathrm{FeO}_{4}{ }^{3-}+\mathrm{O}_{2} \tag{4}
\end{equation*}
$$

plasma lamp in a stopped-flow spectrophotometer. ${ }^{33}$ The rates

[^4]Table III. Rates of Reaction for $\mathrm{K}_{2} \mathrm{FeO}_{4}$ with a Number of Compounds and Radicals

reactants	pH	$k, \mathrm{M}^{-1} \mathrm{~s}^{-1}$	ref
formate	10.5	$(2.33 \pm 0.40) \times 10^{-2}$	a
formate	8.0	4.00×10^{-1}	13^{b}
DTPA	10.5	$(8.53 \pm 0.32) \times 10^{-4}$	a
Fe(III)-DTPA	10.5	1.02 ± 0.14	a
ethanol	10.5	$(1.47 \pm 0.70) \times 10^{-3}$	a
ethanol	8.0	8.00×10^{-2}	13^{b}
NADH	11.0	$(7.70 \pm 0.44) \times 10^{1}$	a
CO_{2}^{-}	$9.5-10.5$	$(3.50 \pm 0.15) \times 10^{8}$	a
$\mathrm{O}_{2}{ }^{-}$	$9.5-10.5$	$(5.71 \pm 0.17) \times 10^{3}$	a

${ }^{a}$ This study. ${ }^{b}$ Studies were carried out in 0.1 M phosphate buffer, pH 8.0 at $25^{\circ} \mathrm{C}$
of reaction were determined at 510 nm , and it was found that they are independent of pH in the range investigated (10.5-12.35). The experiments were carried out at constant $\left[\mathrm{O}_{2}{ }^{-}\right]=5 \pm 1 \mu \mathrm{M}$ and $\left[\mathrm{FeO}_{4}{ }^{2-}\right]=50.6-97.5 \mu \mathrm{M}$ at $24^{\circ} \mathrm{C}$ in the presence of $50 \mu \mathrm{M}$ DTPA, yielding $k_{4}=(5.71 \pm 0.17) \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.

Oxidation of NADH by $\mathrm{K}_{2} \mathrm{FeO}_{4}$. The reactivity of $\mathrm{FeO}_{4}{ }^{2-}$ with reduced nicotinamide adenine dinucleotide (NADH) was monitored spectrophotometrically at $340 \mathrm{~nm}\left(24^{\circ} \mathrm{C}, \mathrm{pH} 11.0\right)$. While the ferrate concentration was kept constant at $50 \mu \mathrm{M}$, the [NADH] was varied from 0.25 to 1.0 mM . The initial disappearance of NADH followed pseudo-first-order kinetics and was shown to be proportional to the concentration of NADH over the concentration range studied. The corresponding second-order rate constant $k=77.1 \pm 4.4 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ is surprisingly low. There was no indication of a possible H^{-}or equivalent 2 -electron step reduction reaction.

Reaction of Formate with $\mathrm{Fe}(\mathrm{V})$. The rate of reaction of $\mathrm{FeO}_{4}{ }^{3-}$ with formate was studied by pulse radiolysis at pH 10.5 and 24 ${ }^{\circ} \mathrm{C}$. The $\mathrm{Fe}(\mathrm{V})$ was generated by reduction of $\mathrm{Fe}(\mathrm{VI})$ with $\mathrm{CO}_{2}{ }^{-}$ as described above. When the formate concentration (10-500 $\mathrm{mM})$ at constant $\left[\mathrm{FeO}_{4}{ }^{2-}\right]=53 \mu \mathrm{M}$ was varied, the reaction of $\mathrm{Fe}(\mathrm{V})$ with HCOO^{-}could be followed by observing the pseudo-first-order disappearance of $\mathrm{Fe}(\mathrm{V})$ at its absorption maximum at 390 nm . These experiments were carried out in the absence of DTPA and corrected for the spontaneous disappearance of $\mathrm{Fe}(\mathrm{V})$ in the absence of formate. The spontaneous disappearance of $\mathrm{Fe}(\mathrm{V})$ was determined earlier in solutions in which the $\mathrm{Fe}(\mathrm{VI})$ was reduced with the hydrated electron ($k=2.0 \times 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}$). The computed second-order rate constant for the reaction of $\mathrm{FeO}_{4}{ }^{3-}$ with HCOO^{-}is $k=(2.48 \pm 0.32) \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.

Discussion

The rate constants for the reaction of $\mathrm{FeO}_{4}{ }^{2-}$ with a number of compounds and radicals are given in Table III. A comparison of our numerical values for formate and ethanol with those reported earlier ${ }^{13}$ shows a small difference. The discrepancy is most likely due to the fact that the measurements were taken under different experimental conditions, e.g. different pH 's and chelating agents (phosphate vs DTPA). Overall, these rates are low and do not interfere with the measurement of the rates of interest with $\mathrm{CO}_{2}{ }^{-}$and $\mathrm{O}_{2}{ }^{-}$.

The reduction of $\mathrm{FeO}_{4}{ }^{2-}$ by $\mathrm{CO}_{2}{ }^{-}$has the advantage over the earlier reported reduction with the hydrated electron ${ }^{15}$ in that the yield $G\left(\mathrm{CO}_{2}^{-}\right)=6.05$ is 2.3 times that of the hydrated electron $G\left(\mathrm{e}_{\mathrm{aq}}{ }^{-}\right)=2.65$, which experimentally, results in a significant increase in the observed absorbance for an equivalent dose. The $\mathrm{CO}_{2}{ }^{-}$radical was generated in micromolar quantities in the presence of such quantities of $\mathrm{FeO}_{4}{ }^{2-}$ that all of it was consumed in reaction 3 , yielding an equivalent amount of $\mathrm{FeO}_{4}{ }^{3-}$. This is possible only because of its very high rate of reaction ($k_{3}=3.5$ $\times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$). Although the visible spectrum of $\mathrm{FeO}_{4}{ }^{3-}$ shown in Figure 1 is similar in shape to the one reported earlier, ${ }^{15}$ the molar absorbances reported here are more accurate. The corresponding UV spectrum show in Figure 2 has not been reported before.

When the concentration of formate was varied in a series of experiments, it was possible to determine its rate of reaction with $\mathrm{FeO}_{4}{ }^{3-}\left(k=2.5 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$. This rate is 5 orders of magnitude
larger than the corresponding rate for $\mathrm{FeO}_{4}{ }^{2-}$. Preliminary studies in this laboratory with other organic compounds indicate that $\mathrm{Fe}(\mathrm{V}) / \mathrm{Fe}(\mathrm{IV})$ indeed react orders of magnitude faster than $\mathrm{Fe}-$ (VI). This suggests that $\mathrm{Fe}(\mathrm{VI})$ oxidation processes may be significantly accelerated if carried out in the presence of appropriate one-electron-reducing agents.

The reduction of $\mathrm{FeO}_{4}{ }^{2-}$ by $\mathrm{O}_{2}{ }^{-}$is relatively slow ($k_{4}=5.7 \times$ $10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) and does not show evidence of hypervalent iron transients. In this case, if $\mathrm{Fe}(\mathrm{V})$ and $\mathrm{Fe}(\mathrm{IV})$ react orders of magnitude faster than $\mathrm{Fe}(\mathrm{VI})$ with the superoxide radical, one would not expect to observe these transients. Since the reaction between $\mathrm{Fe}(\mathrm{III})$ and $\mathrm{O}_{2}{ }^{-}$is fast $\left(k=1.5 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right),{ }^{34}$ one
would expect similar or higher rates for the reaction(s) of superoxide radical with $\mathrm{Fe}(\mathrm{V})$ and/or $\mathrm{Fe}(\mathrm{IV})$.

Acknowledgment. This research was carried out at Brookhaven National Laboratory under Contract DE-AC02-76CH00016 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences.

Registry No. NADH, 58-68-4; DTPA, 67-43-6; $\mathrm{FeO}_{4}{ }^{2-}$, 16836-06-9; $\mathrm{FeO}_{4}{ }^{3-}$, 37114-36-6; CO_{2}^{-}, 14485-07-5; ethanol, 64-17-5; formate, 64-18-6.
(34) Rush, J. D.; Bielski, B. H. J. J. Phys. Chem. 1985, 89, 5062.

Dialkylamino Phosphorus Metal Carbonyls. 4. Novel Phosphorus-Bridging Carbonyl Derivatives and Triphosphine Derivatives from Reactions of Tetracarbonylferrate(-II) with (Dialkylamino)dichlorophosphines ${ }^{1-4}$

R. B. King, ${ }^{* \dagger}$ F.-J. Wu, ${ }^{\dagger}$ and E. M. Holt ${ }^{\ddagger}$
Contribution from the Department of Chemistry, University of Georgia, Athens, Georgia 30602, and Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078. Received April 24, 1987

Abstract

Reactions of $\mathrm{R}_{2} \mathrm{NPCl}_{2}\left(\mathrm{R}=\right.$ isopropyl, cyclohexyl) with $\mathrm{Na}{ }_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ give orange $\left(\mathrm{R}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ as the major product in diethyl ether solution and orange $\left(\mathrm{R}_{2} \mathrm{NP}\right)_{3} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ as the major product in tetrahydrofuran solution. X-ray diffraction on $\left(i-\mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}\left(\right.$ monoclinic, $P 2_{1} / n ; a=10.197$ (3), $b=31.403$ (13), $c=9.170$ (3) $\AA ; \beta=112.18$ (2) ${ }^{\circ} ; \boldsymbol{Z}=4$) indicates a structure in which an iron-iron bond (2.603 (2) \AA) in an $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit is bridged by two phosphorus atoms and these two phosphorus atoms are bridged by one of the seven carbonyl groups, thereby suggesting a novel migration of a carbonyl group from iron to phosphorus. X-ray diffraction on ($\left.i-\mathrm{Pr}_{2} \mathrm{NP}\right)_{3} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (monoclinic, $P 2_{1} / n ; a=11.554$ (2), $b=14.294$ (6), $c=20.405$ (4) $\AA ; \beta=90.96^{\circ} ; Z=4$) indicates an $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit ($\mathrm{Fe}-\mathrm{Fe}=2.602$ (2) \AA) bridged by a triphosphine chain. Minor products from the reaction of $i-\mathrm{Pr}_{2} \mathrm{NPCl}_{2}$ with $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ in diethyl ether include an orange trinuclear derivative $\left(\mathrm{R}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{3}(\mathrm{CO})_{9}$ and an unstable diphosphene complex $\left(i-\mathrm{Pr}_{2} \mathrm{~N}\right)_{2} \mathrm{P}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]_{2}$. The latter product adds water upon attempted chromatography to give $\left[i-\mathrm{Pr}_{2} \mathrm{NPHFe}(\mathrm{CO})_{4}\right]_{2} \mathrm{O}$ shown by X-ray diffraction (monoclinic, $P 2_{1} / n ; a=15.682$ (3), $b=14.458$ (3), $c=13.044(8) \AA, \beta=99.80(4)^{\circ} ; Z=4$) to have an oxo-bridged structure ($\mathrm{P}-\mathrm{O}-\mathrm{P}=136.4$ (3) ${ }^{\circ}$), axially substituted trigonal-bipyramidal $\mathrm{LFe}(\mathrm{CO})_{4}$ units, and no iron-iron bond. Minor products from the reaction of i - $\mathrm{Pr}_{2} \mathrm{NPCl}_{2}$ with $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ in tetrahydrofuran include $\left(i-\mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ and $\left(i-\mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{3}(\mathrm{CO})$, as well as orange ($\left.i-\mathrm{Pr}_{2} \mathrm{NP}\right)_{3} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ shown by X-ray diffraction (monoclinic, $\left.P 2_{1} / a ; a=14.910(5), b=12.064(6), c=19.733(10) \AA ; \beta=105.31(4)^{\circ} ; Z=4\right)$ to have a structure similar to that of $\left(i-\mathrm{Pr}_{2} \mathrm{NP}\right)_{3} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ but with a carbonyl group inserted into the triphosphine chain. Reaction of $\mathrm{Et}_{2} \mathrm{NPCl}_{2}$ with $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ in diethyl ether gives totally different types of products arising from migrations of diethylamino groups. The initial major product, isolated when the temperature is kept below $0^{\circ} \mathrm{C}$, is a deep orange solid of stoichiometry $\left(\mathrm{Et}_{2} \mathrm{NP}\right)_{3} \mathrm{Fe}_{3}(\mathrm{CO})_{12}$ shown by X-ray diffraction (monoclinic, $P 2_{1} / n ; a=17.071$ (7), $b=19.116$ (8), $c=10.853$ (3) $\AA ; \beta=$ 96.82°) to have a four-membered FeP_{3} ring bonded to two isolated $\mathrm{Fe}(\mathrm{CO})_{4}$ groups, a four-membered FePOC ring formed by a diethylcarbamoyl group bridging an $\mathrm{Fe}-\mathrm{P}$ bond, an $\left(\mathrm{Et}_{2} \mathrm{~N}\right)_{2} \mathrm{P}$ unit formed by diethylamino migration, but no $\mathrm{Fe}-\mathrm{Fe}$ bonds. This complex undergoes facile decarbonylation in solution at room temperature to give an orange solid of stoichiometry $\left(\mathrm{Et}_{2} \mathrm{NP}\right)_{3} \mathrm{Fe}_{3}(\mathrm{CO})_{11}$. Structure determination of this decarbonylation product by X-ray diffraction (monoclinic, $P 2_{1} / n ; a=$ $9.054(4), b=38.752$ (34), $c=19.737$ (8) $\left.\AA, \beta=104.05(3)^{\circ} ; Z=8\right)$ indicates that this decarbonylation reaction involves conversion of a bridging diethylcarbamoyl group to a terminal diethylcarbamoyl group, formation of an $\mathrm{Fe}-\mathrm{Fe}$ bond, and formation of a new $\mathrm{Fe}-\mathrm{P}$ bond. The products formed from reactions of $\mathrm{R}_{2} \mathrm{NPCl}_{2}$ with $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ can be rationalized by schemes involving the terminal (dialkylamino) phosphinidene complex $\mathrm{R}_{2} \mathrm{NP}=\mathrm{Fe}(\mathrm{CO})_{4}$ as a reactive intermediate, which can undergo a redox reaction with $\mathrm{Fe}(\mathrm{CO})_{4}{ }^{2-}$ in tetrahydrofuran but not in diethyl ether.

Recent interest in the chemistry of diphosphenes, ${ }^{5} \mathrm{RP}=\mathrm{PR}$, because of the presence of the phosphorus-phosphorus double bond, has led to numerous studies on their preparation by dehalogenation of RPCl_{2} derivatives with diverse strong reducing agents. Such reactions with metal carbonyl anions as the reducing agents have yielded products that may be regarded as metal carbonyl complexes of the diphosphenes. In this connection re-

[^5]actions of the readily available ${ }^{6,7}$ dianion $\mathrm{Fe}(\mathrm{CO})_{4}{ }^{2-}$ with diverse $R \mathrm{PCl}_{2}$ derivatives, mainly those containing bulky R groups, have
(1) Part 3: King, R. B.; Fu, W.-K.; Holt, E. M. Inorg. Chem. 1986, 25, 2394.
(2) This work was taken in part from the doctoral dissertation of F.-J.W., University of Georgia, 1987.
(3) Portions of this work were presented at the 191st National Meeting of the American Chemical Society, New York, NY, April 1986, and the 10th International Conference on Phosphorus Chemistry, Bonn, Germany, Sept 1986.

[^0]: (40) Tungsten basis functions were as previously described: Blower, P. J.; Chisholm, M. H.; Clark, D. L.; Eichhorn, B. W. Organometallics 1986, 5, 2125.
 (41) Hehre, W. J.; Steward, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 2657.

[^1]: ${ }^{\dagger}$ Present address: Department of Biocheristry, Wake Forest University, Winston-Salem, NC 27103.

[^2]: (1) Felton, R. H.; Owen, G. S.; Dolphin, D.; Fajer, J. J. Am. Chem. Soc. 1971, 93, 6332 .
 (2) Audette, R. J.; Quail, J. W.; Smith, P. J. Tetrahedron Lett. 1971, 279.
 (3) Audette, R. J.; Quail, J. W.; Smith, P. J. J. Chem. Soc., Chem. Commun. 1972, 38.
 (4) BeMiller, J. N.; Vithal, G. K.; Darling, S. D. Tetrahedron Lett. 1972, 4143
 (5) Groves, J. T.; Van Der Puy, M. J. Am. Chem. Soc. 1974, 96, 5274.
 (6) Williams, D. H.; Riley, J. T. Inorg. Chim. Acta 1974, 8, 177.
 (7) Groves, J. T.; Swanson, W. W. Tetrahedron Lett. 1975, 1953.
 (8) Groves, J. T.; McClusky, G. A. J. Am. Chem. Soc. 1976, 98, 859.
 (9) Groves, J. T.; Nemo, T. E.; Myers, R. S. J. Am. Chem. Soc. 1979, 101 , 1032
 (10) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, R. E.; Evans, B. J. J. Am. Chem. Soc. 1981, 103, 2884.
 (11) Groves, J. T.; Nemo, T. E. J. Am. Chem. Soc. 1983, 105, 6243.
 (12) Bartzatt, R.; Tabatabai, A.; Carr, J. Synth. React. Inorg. Met.-Org. Chem. 1985, 15, 1171.
 (13) Carr, J. D.; Kelter, P. B.; Tabata bai, A.; Spichal, D.; Erickson, J.; McLaughlin, C. W. Proceedings of the Conference on Water Chlorination and Chemical Environment Impact Health Effects, 1985.
 (14) Levanson, W.; McAuliffe, C. A. Coord. Chem. Rev. 1974, 12, 151.
 (15) Rush, J. D.; Bielski, B. H. J. J. Am. Chem. Soc. 1986, 108, 523.
 (16) Thompson, G. W.; Ockerman, L. T.; Schreyer, J. M. J. Am. Chem. Soc. 1951, 73, 1379.
 (17) Audette, R. J.; Quail, J. W. Inorg. Chem. 1972, Il, 1904.
 (18) BeMiller, J. N.; Darling, S. D. U.S. Patent $3632802,1972$.
 (19) Goff, H.; Murmann, R. K. J. Am. Chem. Soc. 1971, 93 , 6058.
 (20) Hoppe, M. L.; Schlemper, E. O.; Murmann, R. K. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1982, B38, 2237.
 (21) Ettel, F.; Veprek-Siska, J. Collect. Czech. Chem. Commun. 1969, 34, 2182.
 (22) Ernst, T.; Wawrzenczyk, M.; Cyfert, M.; Wronska, M. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1979, 27, 773 .
 (23) Kalecinski, J. Rocz. Chem. 1967, 41, 661.
 (24) Wood, R. H. J. Am. Chem. Soc. 1958, $80,2038$.
 (25) Klemm, W.; Wahl, K. Angew. Chem. 1953, 65, 261; 1954, 66, 470.
 (26) Scholder, v. R.; Bunsen, v. H.; Kindervater, F.; Zeiss, W. Z. Anorg. Allg. Chem. 1955, 282, 268.
 (27) Wahl, K.; Klemm, W.; Wehrmeyer, G. Angew. Chem., Int. Ed. Engl. 1962, $l, 322$.
 (28) Temple, T. B.; Thickett, G. W. Aust. J. Chem. 1973, 26, 1137.

[^3]: (29) Scholder, R. Angew. Chem., Int. Ed. Engl. 1962, 1, 220.
 (30) Cabelli, D. E.; Bielski, B. H. J. J. Phys. Chem. 1983, 87, 1809.
 (31) Schwarz, H. A. J. Chem. Educ. 1981, 58, 101.
 (32) Draganic, I. G.; Draganic, Z. D. The Radiation Chemistry of Water, Academic: New York, 1971.

[^4]: (33) Bielski, B. H. J.; Arudi, R. L. Anal. Biochem. 1983, 133, 170.

[^5]: ${ }^{\dagger}$ University of Georgia.
 ${ }^{\text {t }}$ Oklahoma State University.

